

Email: sales@tinzyme.com Website: www.tinzyme.com

Tel: +86-755-86134126 WhatsApp/Facebook/Twitter: +86-189-22896756

Ni Sepharose High Performance

Product Number: HQ060212001L

Shipping and Storage

4-30°C in 20% ethanol

Description

Ni Sepharose High Performance is capable of separation and purification by the interaction between Ni^{2+} and certain amino acids (mainly histidine, cysteine, and tryptophan) on the protein side chain, and is applicable for the separation and purification of His-tag proteins and biomolecules that interact with Ni^{2+} .

Matrix	Highly cross-linked 6% sepharose
Range of particle size	25-45µm
Mean particle size	35±5μm
Binding capacity	≥ 40 mg (His-tag protein)/mL (media)
pH stability*	3 - 12 (long-term) 2 - 14 (short-term)
Chemical stability**	All common aqueous solutions and buffers;
	Avoid chelating agents (such as EDTA and EGTA) and reducing agents (such as DTT and DTE)
Flow rate	≥150cm/h

^{*:} Stability refers to the stability of the media before chelating with metal ions.

	0.05M sodium phosphate, pH 7.4					
	0.1M Tris-HCl, pH 7.4					
D CC	0.1M Tris-acetate, pH 7.4					
Buffer	0.1M HEPES, pH 7.4					
	0.1M MOPS, pH 7.4					
	0.1M sodium acetate, pH 4					
D 4 4	8M Urea					
Denaturant	6M Gua-HCl					
	2% Triton X-100					
Detergent	2% Tween 20					
	2% NP-40					
	2% Cholate					
	1% CHAPS					
	0.005M DTE					
	0.005M DTT					
Reducing agent*	0.02M β-mercaptoethanol					
	0.005M TCEP					
	0.01M reduced glutathione					
	0.5M Imidazole					
	20% Ethanol					
Other additives	50% Glycerol					
	0.1M Na2SO4					
	1.5M NaCl					
	0.001M EDTA**					
	0.06M Citrate					

ZINZYME

Tinzyme Co., Limited

Email: sales@tinzyme.com Website: www.tinzyme.com

Tel: +86-755-86134126 WhatsApp/Facebook/Twitter: +86-189-22896756

Specification

Product Name	Specification	Product Number		
Ni Sepharose High Performance	25ml	HQ060212025M		
Ni Sepharose High Performance	100ml	HQ060212100M		
Ni Sepharose High Performance	500ml	HQ060212500M		
Ni Sepharose High Performance	1L	HQ060212001L		
Ni Sepharose High Performance	5L	HQ060212005L		
Ni Sepharose High Performance	20L	HQ060212020L		

Features

- 1. Fast and simple operation (one-step purification).
- 2. It has wide scope of application, with simple operation, and is applicable for gravity column and pre-packed column (peristaltic pump or chromatography system).
- 3. Multiple options are available: it can be chelated with various metal ions (such as Cu²⁺, Zn²⁺, Fe²⁺, Co²⁺, Ca²⁺, etc.) for use.
- 4. Compared with Ni Focurose FF (IDA), it has advantages of low Ni²⁺ dropout and wide reagent compatibility.
- 5. Small particles, high resolution.

Note: Avoid using phosphate buffers (since there may be precipitates) when chelating with Ca2+.

Preparation of Solution

Equilibrium solution: 0.02M PB, 0.5M NaCl, 0.02 - 0.04M Imidazole, pH 7.4. Eluent: 0.02M PB, 0.5M NaCl, 0.5M Imidazole, pH 7.4.

Note: When purifying inclusion bodies, 8M Urea or 6M Gua-HCl should be added to the solution.

Preparation of Sample

- The solution containing the sample should be consistent with the equilibration solution, and the buffer can be exchanged by lysis with the equilibration solution, or by dialysis/ultrafiltration/G25.
- 2. The samples are filtered (filter membrane selection: 0.22 μm if mean particle size is <45μm; 0.45μm if 45μm < mean particle size <165μm; 0.8 μm if mean particle size is >165μm).

Purification Process (taking XK16/10 as an example)

- 1. Connect the chromatographic column to the chromatography system drop-to-drop (to avoid introducing air bubbles).
- 2. Wash 5 CV with purified water at a flow rate of 5 mL/min.
- 3. Wash 5 CV with eluent at a flow rate of 5 mL/min.
- 4. Wash 10 CV with equilibrium solution at a flow rate of 5 mL/min.
- 5. Inject the samples at a flow rate of 5 mL/min.
- 6. Wash with equilibration solution at a flow rate of 5 mL/min until the UV absorption value is stable (10 15 CV).
- 7. Elute 5 CV or 20 CV with the eluent (5 CV by stepwise elution)20 CV by linear gradient elution).

Regeneration (taking XK16/10 as an example)

- 1. Wash 10 CV with purified water at a flow rate of 5 mL/min.
- 2. Wash 10 CV with stripping solution at a flow rate of 5 mL/min.
- 3. Wash 10 CV with equilibrium solution at a flow rate of 5 mL/min.
- 4. Wash 10 CV with purified water at a flow rate of 5 mL/min.
- 5. Wash 5 CV with 0.1M NiSO4 at a flow rate of 5 mL/min.
- 6. Wash 5 CV with purified water at a flow rate of 5 mL/min.
- 7. Wash 5 CV with equilibrium solution at a flow rate of 5 mL/min.

Email: sales@tinzyme.com Website: www.tinzyme.com

Tel: +86-755-86134126 WhatsApp/Facebook/Twitter: +86-189-22896756

8. Wash 5 CV with 20% ethanol at a flow rate of 5 mL/min.

Note: Stripping solution, 0.02M PB, 0.5M NaCl, 0.05 EDTA, pH 7.4.

Washing (taking XK16/10 as an example)

- 1. Strip off Ni2+ according to operation steps in 5.1 5.4.
- 2. Wash 10 CV with 1.5M NaCl at a flow rate of 5 mL/min.
- 3. Wash 10 CV with purified water at a flow rate of 5 mL/min.
- 4. Wash 30 CV with 1.0M NaOH at a flow rate of 2.5 mL/min.
- 5. Wash 10 CV with equilibrium solution at a flow rate of 5 mL/min.
- 6. Wash 10 CV with purified water at a flow rate of 5 mL/min.
- 7. Wash 10 CV with 30% isopropanol at a flow rate of 2.5 mL/min.
- 8. Chelate with Ni2+ according to operation steps in 5.4 5.8.

Common Problems

Common problems and solutions

Problem	Possible causes	Solution				
The target substance is not bound	Injection overload	Decrease the injection volume				
to the media during purification	2. The injection flow rate is too	Decrease the injection flow rate				
or has a lower binding capacity	fast					
	3. Aggregation of proteins or	Clean the media in a timely and effective manner				
	lipids in the media affects the	or replace with new media				
	binding.					
	4. The expression conditions are	It is recommended to prepare an empty vector as				
	too severe, so the His tag is	a control for expression and purification, so as to				
	wrapped and cannot be	determine whether the expression conditions are				
	bound with the media	suitable				
	5. No His-tag proteins in the initial	Verify by gene sequence or His-tag antibody				
	sample					
	6. The target protein appears in	The target protein is not successfully expressed,				
	flow-through mode	or the pH and components of the sample and th				
		equilibration solution are incorrect				
No target substance is collected	1. The target substance is not	Confirm whether the target substance is bound to				
during elution, Or only minor	bound to the media, or has a	the media				
target substance is collected	lower binding capacity					
	2. Inappropriate elution conditions	Increase the concentration of imidazole in the				
		eluent				
	3. Insufficient elution duration	Decrease the flow rate, and extend the retenti-				
		time of the eluent				
	4. The elution volume is too low	Increase the elution volume				
	5. The target protein is washed off	Decrease the concentration of imidazole in the				
	when washing the impurities.	eluent				
	6. The target substance aggregates	Check the solubility and stability of the target				
	and precipitates under the	protein under eluent conditions (pH and sa				
	eluent conditions	concentration). Add some additives to the eluent				
		such as 0.2% Triton X-100 or 0.5% Tween 20				

Website: www.tinzyme.com

Email: sales@tinzyme.com Tel: +86-755-86134126 W WhatsApp/Facebook/Twitter: +86-189-22896756

Low purity of the target	1. Lack of pretreatment for the	The samples must be centrifuged or filtered					
substance	sample	before being injected on the column					
	2. The viscosity of sample is too	Dilute the sample appropriately with the					
	high	equilibration solution to decrease the viscosity					
	Inadequate impurity washing	Increase the washing volume until being stable at					
		the baseline and consistent with the equilibration					
		solution					
	4. Impurity proteins or lipids	Clean the media in a timely and effective manner					
	aggregate and precipitate in						
	the media						
	5. The impurity has high affinity	Purify with other types of media (such as ionic or					
	with Ni ²⁺ .	molecular sieves)					
	6. Degradation of the target	Check the stability of the target protein, and add					
	substance	protease inhibitors					
	7. Poor column media	Re-pack the media or purchase again					
	8. The impurity has non-specific	Select appropriate additives to decrease the					
	adsorption with the media.	non-specific adsorption. Add some additives to					
	1	the sample: such as 0.5% Triton X-100, 1.0					
		Tween 20 or 50% glycerol.					
	Larger sample storage volume at	Re-pack the column or decrease the sample					
	the top of the separation	storage volume					
	column						
	10. Microbial growth in the media	Please store the media in time and correctly after					
		use					
Media capacity decreased	1. The injection flow rate is too	Decrease the injection flow rate					
	fast						
	2. Proteins or lipids aggregate in	Clean the media in time					
	the media, resulting in						
	decreased capacity.						
	3. Repeated use for too many	Replace with a new media					
	times						
	4. The expression conditions are	It is recommended to prepare an empty vector as					
	too severe, so the His tag is	a control for expression and purification, so as to					
	wrapped and cannot be well	determine whether the expression conditions are					
	bound with the media	suitable					
Chromatographic peaks rise too	The media is packed at higher	Re-pack the column					
steeply	concentration						
Chromatographic peaks rise	The media is packed at lower	Re-pack the column					
slowly or have tailing	concentration						
Cracked or dry column bed	There is any leakage, or large air	Check the tube lines for leakage or air bubbles					
	bubbles are introduced	and re-pack the column					
Slow flow rate	1. Aggregation of proteins or	Clean the media or filter membrane in time					
	lipids						
	2. Proteins precipitate in the media	Modify the components of the equilibration					
		solution and eluent to maintain the stability of					

Website: www.tinzyme.com

Email: sales@tinzyme.com Tel: +86-755-86134126 W WhatsApp/Facebook/Twitter: +86-189-22896756

					targe	t substanc	e and	the bir	nding	efficienc	cy of
					media						
	3. Microbial	growth	in	the	The	reagents	used	must	be	filtered	and
	separation column			degas	ssed;The	samples	must	be	centrifuge	ed or	
				filter	ed before b	eing in	jected o	on the	e column		